Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Nate Orloff (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 159

Carbon Nanotube Thin Film Patch Antennas for Wireless Communications

May 24, 2019
Author(s)
E. A. Bengio, Damir Senic, Lauren W. Taylor, Robert J. Headrick, Michael King, Peiyu Chen, Charles A. Little, John M. Ladbury, Chris Long, Christopher L. Holloway, Aydin Babakhani, James Booth, Nate Orloff
Early work on carbon nanotube (CNT) antennas indicated that their performance could not match that of metals such as copper. However, recent improvements in fluid phase CNT processing have yielded macroscopic CNT materials with better alignment and

NONDESTRUCTIVE, NONCONTACT QUANTIFICATION OF CARBON FIBER ALIGNMENT AND ORIENTATION BY HIGH-SPEED MICROWAVE ELLIPSOMETRY FOR TAILORABLE FEEDSTOCK

May 20, 2019
Author(s)
Nina Popovic, Shridar Yarlagadda, Dirk Heider, Edward Garboczi, Chris Long, Nate Orloff
Novel short-fiber composites facilitate the manufacture of tailorable feedstock for small formed parts. In these composites, the alignment and orientation of the short fibers must be controlled to achieve the desired composite properties. While there are

Measuring Ion-Pairing and Hydration in Variable Charge Supramolecular Cages with Microwave Microfluidics

May 17, 2019
Author(s)
Angela C. Stelson, Cynthia M. Hong, Mitchell C. Groenenboom, Charles A. Little, James C. Booth, Nathan D. Orloff, Robert G. Bergman, Kenneth N. Raymond, Kathleen A. Schwarz, F. D. Toste, Christian J. Long
MetaMetal–organic supramolecular cages can act as charged molecular containers that mediate reactions, mimic enzymatic catalysis, and selectively sequester chemicals.1,2 The hydration of these cages in solution plays a crucial role in their interactions

Label-Free Detection of Conformational Changes in Switchable DNA Nanostructures with Microwave Microfluidics

March 12, 2019
Author(s)
Angela C. Stelson, Minghui Lu, Charles A. Little, Christian J. Long, Nathan D. Orloff, Nicolas Stephanopolous, James C. Booth
Detection of conformational changes in biomolecular assemblies provides critical information into biological and self-assembly processes. State-of-the-art in situ conformation detection techniques rely on fluorescent labels or protein-specific binding

Impedance tuning with photoconductors to 40 GHz

January 22, 2019
Author(s)
Jasper A. Drisko, Ari D. Feldman, Franklyn J. Quinlan, James C. Booth, Nathan D. Orloff, Christian J. Long
Light has been widely used to control a variety of microwave devices, including switches, antennas, and detectors. Here, we present a photoconductive device integrated into a coplanar waveguide to tune complex impedances at microwave frequencies with

Measurement of Ion-Pairing Interactions in Buffer Solutions with Microwave Microfluidics

January 1, 2019
Author(s)
Charles A. Little, Angela C. Stelson, Nathan D. Orloff, Christian J. Long, James C. Booth
Broadband microwave microfluidics is an emerging technique for quantifying the frequency dependent electrical response of fluids in the microwave regime. This technique can access important physical properties including interfacial polarization, ion

Determining Carbon Fiber Composite Loading by Flip-Chip on a Coplanar Waveguide to 110GHz

November 22, 2018
Author(s)
Nina P. Basta, Jasper A. Drisko, Aaron M. Hagerstrom, Joshua A. Orlicki, Jennifer M. Sietins, Daniel B. Knorr, Jr., Edward J. Garboczi, Christian J. Long, Nathan D. Orloff
The electrical properties of materials are a necessary part of any circuit design. As applications at millimeter-wave frequen-cies increase, there is a growing need to develop new materials with low loss and multiple functionalities. Unfortunately, many

Determining Carbon Fiber Composite Loading with Flip-Chip Measurements to 110 GHz

September 1, 2018
Author(s)
Nina P. Basta, Aaron Hagerstrom, Jasper A. Drisko, James Booth, Edward Garboczi, Christian Long, Nathan Orloff
— Electrical properties of materials are a necessary part of any circuit design. With emerging applications at millimeter- wave frequencies, there is a need to characterize new materials before they come to market. At frequencies below about 67 GHz, it is

Measuring Ion-Pairing in Buffer Solutions with Microwave Microfluidics

June 14, 2018
Author(s)
Angela C. Stelson, Charles A. Little, Nathan D. Orloff, Christian J. Long, James C. Booth
Microwave microfluidics is an emergent technique for characterizing conductivity and permittivity of fluids and has wide-ranging applications in the materials science and biomedical fields. The electrical properties of fluids as a function of frequency can

How to extract distributed circuit parameters from the scattering parameters of a transmission line

January 15, 2018
Author(s)
Nathan D. Orloff, Jasper A. Drisko, Angela C. Stelson, Charles A. Little, James C. Booth, Jordi Mateu, Christian J. Long
Distributed circuit parameters parameterize the transmission and reflection off a given transmission line in terms of a distributed resistance, inductance, capacitance, and conductance, which are per unit length frequency dependent quantities. While there

Qualitative Multidimensional Calibration Comparison

January 15, 2018
Author(s)
Aric W. Sanders, Ronald A. Ginley, Christian J. Long, Jasper A. Drisko, Nathan D. Orloff, Richard A. Chamberlin
We present a technique for the visual comparison of any two vector network analyzer calibrations. This method visualizes the comparative action of the calibrations for multiple complex scattering parameters relative to the calibrated measurement plane