Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Franklyn Quinlan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 90

Calculation of the impulse response and phase noise of a high-current photodetector using the drift-diffusion equations

February 4, 2019
Author(s)
Franklyn Quinlan, Seyed Ehsan Jamali Mahabadi, Shaokang Wang, Thomas F. Carruthers, Curtis R. Menyuk, Meredith N. Hutchinson, Jason D. McKinney, Keith J. Williams
We describe a procedure to calculate the impulse response and phase noise of high-current photodetectors using the drift-diffusion equations while avoiding computationally expensive Monte Carlo simulations. We apply this procedure to a modified uni

Impedance tuning with photoconductors to 40 GHz

January 22, 2019
Author(s)
Jasper A. Drisko, Ari D. Feldman, Franklyn J. Quinlan, James C. Booth, Nathan D. Orloff, Christian J. Long
Light has been widely used to control a variety of microwave devices, including switches, antennas, and detectors. Here, we present a photoconductive device integrated into a coplanar waveguide to tune complex impedances at microwave frequencies with

Optimizing linearity in high-speed photodiodes

November 7, 2018
Author(s)
Josue Davila-Rodriguez, X. Xie, J. Zang, Christian J. Long, Tara M. Fortier, Holly F. Leopardi, Takuma Nakamura, J. C. Campbell, Scott A. Diddams, Franklyn J. Quinlan
Analog photonic links require high fidelity, high speed optical-to-electrical conversion for applications such as radio-over-fiber, synchronization at kilometer-scale facilities, and low- noise electronic signal generation. Nonlinearity is a particularly

An electro-optic ultrafast light source with sub-cycle stability

August 8, 2018
Author(s)
David R. Carlson, Daniel D. Hickstein, Wei Zhang, Andrew J. Metcalf, Franklyn J. Quinlan, Scott A. Diddams, Scott B. Papp
Optical frequency combs can produce femtosecond light pulses with sub-cycle precision, and are typically made by relying on the intrinsic stability of mode-locked lasers. Now, by carving a continuous-wave laser into pulses via electro-optic modulation (EOM

Temperature dependence of nonlinearity in high-speed, high-power photodetectors

September 30, 2017
Author(s)
Josue Davila-Rodriguez, Holly Leopardi, Tara Fortier, Xiaojun Xie, Joe C. Campbell, James Booth, Nate Orloff, Scott Diddams, Franklyn Quinlan
We present an experimental study of the nonlinearity of modified uni-traveling carrier (MUTC) photodiodes at cryogenic temperatures. At 120 K, the amplitudeto-phase (AM-to-PM) conversion nonlinearity is reduced by up to 10 dB, resulting in nearly 40 dB AM

A compact, thermal noise limited reference cavity for ultra-low noise microwave generation

March 23, 2017
Author(s)
Josue Davila-Rodriguez, Frederick N. Baynes, Andrew D. Ludlow, Tara M. Fortier, Holly F. Leopardi, Scott A. Diddams, Franklyn J. Quinlan
A 25 mm long, rigidly-held, ultra-stable optical frequency reference cavity is demonstrated. The cavity spacer has an easy-to-manufacture cylindrical shape which nonetheless exhibits a holding geometry predicted to be first-order insensitive to the

Optically referenced broadband electronic synthesizer with 15 digits of resolution

September 5, 2016
Author(s)
Franklyn J. Quinlan, Tara M. Fortier, A. Rolland, Frederick N. Baynes, A. J. Metcalf, Archita Hati, Andrew D. Ludlow, Nathan M. Hinkley, M. Shimizu, Joe Campbell, Scott A. Diddams
Increasing demands in the high tech industry for higher data rates and better synchronization necessitates the development of new wideband and tunable sources with improved noise performance over traditional synthesis based quartz oscillators. Precision

Microresonator Brillouin laser stabilization using a microfabricated rubidium cell

June 17, 2016
Author(s)
William Loh, Matthew T. Hummon, Holly Leopardi, Tara Fortier, Franklyn Quinlan, John Kitching, Scott Papp, Scott Diddams
We frequency stabilize the output of a miniature stimulated Brillouin scattering (SBS) laser to rubidium atoms in a microfabricated cell to realize a laser system with frequency stability at the 10-11 level over seven decades in averaging time. In addition

Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator

October 1, 2015
Author(s)
Franklyn J. Quinlan, A. J. Metcalf, Tara M. Fortier, Scott A. Diddams, Andrew M. Weiner
We investigate the low timing jitter properties of a tunable single-pass optoelectronic frequency comb generator. The scheme is flexible in that both the repetition rate and the center frequency can be continuously tuned. When operated at 10 GHz comb

Dual-microcavity narrow-linewidth Brillouin laser

March 5, 2015
Author(s)
William Loh, Adam A. Green, Frederick N. Baynes, Daniel C. Cole, Franklyn J. Quinlan, Hansuek Lee, Kerry J. Vahala, Scott A. Diddams
The tunable narrow-linewidth laser is a revolutionary metrology tool that is critical in precision spectroscopy and the determination of fundamental physical constants, displacement measurements at the 10 -20 level, and the development of the most advanced

Attosecond timing in optical-to-electrical conversion

February 10, 2015
Author(s)
Frederick N. Baynes, Franklyn J. Quinlan, Tara M. Fortier, Qiugui Zhou, Andreas Beling, Joe C. Campbell, Scott A. Diddams
The most frequency-stable sources of electromagnetic radiation are produced optically, and optical frequency combs provide the means for high fidelity frequency transfer across hundreds of terahertz and into the microwave domain. A critical step in the

Broadband Noise Limit in the Photodetection of Ultralow Jitter Optical Pulses

November 14, 2014
Author(s)
Franklyn J. Quinlan, W. Sun, Tara M. Fortier, Jean-Daniel Deschenes, Yang Fu, Scott A. Diddams, Joe Campbell
Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption