Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Franklyn Quinlan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 90

High-Power and High-Linearity Photodetector Modules for Microwave Photonic Applications

October 15, 2014
Author(s)
Frederick N. Baynes, Efthymios Rouvalis, Xiaojun Xie, Qiugui Zhou, Franklyn J. Quinlan, Tara M. Fortier, Scott A. Diddams, Andreas G. Steffan, Andreas Beling, Joe C. Campbell
We demonstrate hermetically packaged InGaAs/InP photodetector modules for high performance microwave photonic applications. The devices employ an advanced photodiode epitaxial layer known as the modified uni-traveling carrier photodiode (MUTC-PD) with

Microresonator frequency comb optical clock

July 1, 2014
Author(s)
Scott B. Papp, Katja M. Beha, Pascal P. Del'Haye, Franklyn J. Quinlan, Hansuek Lee, Kerry J. Vahala, Scott A. Diddams
Optical frequency combs enable measurement precision at the 20th digit, and measurement accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear

Optical amplification and pulse interleaving for low noise photonics microwave generation

March 12, 2014
Author(s)
Franklyn J. Quinlan, Frederick N. Baynes, Tara M. Fortier, Qiugui Zhou, Allen Cross, Joe Campbelll, Scott A. Diddams
We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase noise

State-of-the-Art RF Signal Generation From Optical Frequency Division

September 2, 2013
Author(s)
Archita Hati, Craig W. Nelson, Corey A. Barnes, Danielle G. Lirette, Tara M. Fortier, Franklyn J. Quinlan, Jason A. DeSalvo, Andrew D. Ludlow, Till P. Rosenband, Scott A. Diddams, David A. Howe
We present the design of a novel, ultra-low phase-noise frequency synthesizer implemented with extremely low noise regenerative frequency dividers. This synthesizer generates eight outputs viz. 1.6 GHz, 320 MHz, 160 MHz, 80 MHz, 40 MHz, 20 MHz, 10 MHz and

Analysis of shot noise in the detection of ultrashort optical pulse trains

May 31, 2013
Author(s)
Franklyn J. Quinlan, Tara M. Fortier, Haifeng (. Jiang, Scott A. Diddams
We present a frequency domain model of shot noise in the photodetection of ultrashort optical pulse trains using a time-varying analysis. Shot noise-limited photocurrent power spectral densities, signal-to-noise expressions, and shot noise spectral

Photonic microwave generation with high-power photodiodes

May 14, 2013
Author(s)
Tara M. Fortier, Franklyn J. Quinlan, Archita Hati, Craig W. Nelson, Jennifer A. Taylor, Yang Fu, Joe Campbell, Scott A. Diddams
We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with 980 nm picosecond pulses from a repetition

Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains

March 10, 2013
Author(s)
Franklyn J. Quinlan, Tara M. Fortier, Haifeng (. Jiang, Archita Hati, Craig W. Nelson, Yang Fu, J. C. Campbell, Scott A. Diddams
Photocurrent shot noise represents the fundamental quantum limit of amplitude, phase and timing measurements of optical signals. It is generally assumed that non-classical states of light must be employed to alter the standard, time-invariant shot noise

Sub-femtosecond absolute timing jitter with a 10 GHz hybrid photonic-microwave oscillator

June 7, 2012
Author(s)
Tara M. Fortier, Craig W. Nelson, Archita Hati, Franklyn J. Quinlan, Jennifer A. Taylor, Haifeng (. Jiang, Chin-Wen Chou, Till P. Rosenband, Nathan D. Lemke, Andrew D. Ludlow, David A. Howe, Christopher W. Oates, Scott A. Diddams
We present an optical-electronic approach to generating microwave signals with high spectral purity. By overcoming shot noise and operating near fundamental thermal limits, we demonstrate 10 GHz signals that have timing deviation from an ideal periodic

A hybrid 10 GHz photonic-microwave oscillator with sub-femtosecond absolute timing jitter

May 24, 2012
Author(s)
Tara M. Fortier, Craig W. Nelson, Archita Hati, Franklyn J. Quinlan, Jennifer A. Taylor, Haifeng (. Jiang, Chin-Wen Chou, Nathan D. Lemke, Andrew D. Ludlow, David A. Howe, Christopher W. Oates, Scott A. Diddams
We demonstrate a 10 GHz hybrid oscillator comprised of a phase stabilized optical frequency comb divider and a room temperature dielectric sapphire oscillator. Characterization of the 10 GHz microwave signal via comparison of two independent hybrid

Ultra-low-noise Regenerative Frequency Divider for High Spectral Purity RF Signal Generation

May 24, 2012
Author(s)
Archita Hati, Craig W. Nelson, Corey A. Barnes, Danielle G. Lirette, Jason A. DeSalvo, Tara M. Fortier, Franklyn J. Quinlan, Andrew D. Ludlow, Till P. Rosenband, Scott A. Diddams, David A. Howe
We implement an ultra-low-noise frequency divider chain from 8 GHz to 5 MHz that utilizes custom-built regenerative frequency divide-by-2 circuits. The single-sideband (SSB) residual phase noise of this regenerative divider at 5 MHz output is -163 dBc/Hz

Demonstration of on-sky calibration of astronomical spectra using a 20 GHz near-IR laser frequency comb

March 6, 2012
Author(s)
Gabriel G. Ycas, Franklyn J. Quinlan, Scott A. Diddams, Steve Osterman, Chad F. Bender, Brandon Botzer, Lawrence W. Ramsey, Ryan Terrien, Suvrath Mahadevan, Stephen L. Redman
We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser that provides a uniform array of optical frequencies stabilized using the GPS-system atomic clocks spanning 1475–1625 nm. This comb was

A High-Resolution Atlas of Uranium-Neon in the H Band

February 3, 2012
Author(s)
Scott A. Diddams, Stephen L. Redman, Gabriel G. Ycas, Ryan Terrien, Suvrath Mahadevan, Lawrence W. Ramsey, Chad F. Bender, Steve Osterman, Franklyn J. Quinlan, James E. Lawler, Gillian Nave
The rapid advance in near-infrared (NIR) detector technology in the past decade has lead to a number of high-resolution astronomical spectrometers that are either in operation or in the planning stages. Precision wavelength calibration techniques

Noise floor reduction of an Er:fiber laser-based photonic microwave generator

December 1, 2011
Author(s)
Haifeng (. Jiang, Jennifer A. Taylor, Franklyn J. Quinlan, Tara M. Fortier, Scott A. Diddams
Commercially available erbium-doped mode-locked fiber lasers are compact, robust, and suitable to be the frequency divider of an ultra-low phase noise photonic microwave generator. However, for a mode-locked fiber laser with repetition rate of a few