Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Huairuo Zhang (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 14 of 14

On-chip synthesis of quasi two-dimensional semimetals from multi-layer chalcogenides

September 23, 2024
Author(s)
Jun Cai, Huairuo Zhang, Yuanqiu Tan, Zheng Sun, Rahul Tripathi, Peng Wu, Sergiy Krylyuk, Caleb Suhy, Jing Kong, Albert Davydov, Zhihong Chen, Joerg Appenzeller
Reducing the dimensions of materials from three to two, or quasi-two, provides a fertile platform for exploring emergent quantum phenomena and developing next-generation electronic devices. However, growing high-quality, ultrathin, quasi two-dimensional

Single-Phase L10-Ordered High Entropy Thin Films with High Magnetic Anisotropy

June 28, 2024
Author(s)
Willie Beeson, Dinesh Bista, Huairuo Zhang, Sergiy Krylyuk, Albert Davydov, Gen Yin, Kai Liu
The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. We explore the potential to achieve high magnetic anisotropy materials in single-phase HEA thin films. Thin films of FeCoNiMnCu

Understanding the Origin and Implication of the Indirect-to-Direct Bandgap Transition in Multilayer InSe

May 2, 2024
Author(s)
Nicholas Pike, Ruth Pachter, Michael Altvater, Chris Stevens, Matthew Klein, Joshua Hendrickson, Huairuo Zhang, Sergiy Krylyuk, Albert Davydov, Nicholas Glavin
Indium selenide (InSe) multilayers have attracted much interest recently due to their electronic and optical properties, partially dependent on the existence of an indirect-to-direct bandgap transition that is correlated to the multilayer thickness. In

Raman Spectroscopy of Phonon States in NbTe4 and TaTe4 Quasi-1D van der Waals Crystals

February 23, 2024
Author(s)
Zahra Ebrahim Nataj, Fariborz Kargar, Sergiy Krylyuk, Topojit Debnath, Maedeh Taheri, Subhajit Ghosh, Huairuo Zhang, Albert Davydov, Roger Lake, Alexander Balandin
We report the results of polarization-dependent Raman spectroscopy of phonon states in single-crystalline quasi-one-dimensional NbTe4 and TaTe4 van der Waals materials. The measurements were conducted in the wide temperature range from 80 K to 560 K. Our

Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions

October 23, 2023
Author(s)
Gang Qiu, Hung-Yu Hu, Lunhui Hu, Huairuo Zhang, Chi-Yen Chen, Yanfeng Lyu, Christopher Eckberg, Peng Deng, Sergiy Krylyuk, Albert Davydov, Ruixing Zhang, Kang Wang
Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings

Elemental excitations in MoI3 one-dimensional van der Waals nanowires

November 28, 2022
Author(s)
Fariborz Kargar, Zahra Barani, Nicholas Sesing, Thuc Mai, Topojit Debnath, Huairuo Zhang, Yuhang Liu, Yanbing Zhu, Subhajit Ghosh, Adam Biacchi, Felipe H. da Jornada, Ludwig Bartels, Tehseen Adel, Angela R. Hight Walker, Albert Davydov, Tina Salguero, Roger Lake, Alexander Balandin
We report the polarization-dependent Raman spectrum of exfoliated MoI3, a van der Waals material with a "true one-dimensional" crystal structure that can be exfoliated to individual atomic chains. The temperature evolution of several Raman features reveals

On-the-fly closed-loop materials discovery via Bayesian active learning

November 24, 2020
Author(s)
Aaron Gilad Kusne, Heshan Yu, Huairuo Zhang, Jason Hattrick-Simpers, Brian DeCost, Albert Davydov, Leonid A. Bendersky, Apurva Mehta, Ichiro Takeuchi
Active learning—the field of machine learning (ML) dedicated to optimal experiment design—has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop

Thermal Stability of Titanium Contacts to MoS2

August 30, 2019
Author(s)
Huairuo Zhang, Albert Davydov, Leonid A. Bendersky, Keren M. Freedy, Stephen J. McDonnell
Thermal annealing of Ti contacts is commonly implemented in the fabrication of MoS2 devices however its effects on interface chemistry have not been previously reported in the literature. In this work, the thermal stability of titanium contacts deposited

An Ultra-fast Multi-level MoTe2-based RRAM

January 17, 2019
Author(s)
Albert Davydov, Leonid A. Bendersky, Sergiy Krylyuk, Huairuo Zhang, Feng Zhang, Joerg Appenzeller, Pragya R. Shrestha, Kin P. Cheung, Jason P. Campbell
We report multi-level MoTe2-based resistive random-access memory (RRAM) devices with switching speeds of less than 5 ns due to an electric-field induced 2H to 2Hd phase transition. Different from conventional RRAM devices based on ionic migration, the

Black phosphorus tunneling field-effect transistors

December 21, 2018
Author(s)
Albert Davydov, Huairuo Zhang, Leonid A. Bendersky
Band-to-band tunneling field-effect transistors (TFETs)1-7 have emerged as promising candidates to replace conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) for low-power integration circuits and have been demonstrated to overcome

Electric field induced phase transition in vertical MoTe2 and Mo1-xWxTe2 based RRAM devices

December 10, 2018
Author(s)
Feng Zhang, Sergiy Krylyuk, Huairuo Zhang, Cory A. Milligan, Dmitry Y. Zemlyanov, Leonid A. Bendersky, Albert Davydov, Joerg Appenzeller, Benjamin P. Burton, Yugi Zhu
Transition metal dichalcogenides have attracted attention as potential building blocks for various electronic applications due to their atomically thin nature and polymorphism. Here, we report an electric-field-induced structural transition from a 2H

Towards superconductivity in p-type delta-doped Si/Al/Si heterostructures

July 30, 2018
Author(s)
Aruna N. Ramanayaka, Hyun Soo Kim, Joseph A. Hagmann, Roy E. Murray, Ke Tang, Neil M. Zimmerman, Curt A. Richter, Joshua M. Pomeroy, Frederick Meisenkothen, Huairuo Zhang, Albert Davydov, Leonid A. Bendersky
In pursuit of superconductivity in p-type silicon (Si), we are using a single atomic layer of aluminum (Al) sandwiched between a Si substrate and a thin Si epi-layer. The delta layer was fabricated starting from an ultra high vacuum (UHV) flash anneal of

Electric-Field Induced Reversible Switching of the Magnetic Easy Axis in Co/BiFeO 3 on SrTiO 3

April 18, 2017
Author(s)
Tieren Gao, Xiaohang Zhang, William D. Ratcliff, Shingo Maruyama, Makoto Murakami, Anbusathaiah Varatharajan, Zahra Yamani, Peijie Chen, Ke Wang, Huairuo Zhang, Robert D. Shull, Leonid A. Bendersky, John Unguris, R. Ramesh, Ramamoorthy Ramesh, I. Takeuchi
We demonstrate reversible electric-field-induced switching of the magnetic state of the Co layer in Co/BiFeO 3 (BFO) (001) thin film heterostructures fabricated on (001) SrTiO 3 substrates. The angular dependence of the coercivity and the remanent