Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Nicholas Derimow (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 32

Modulated Laser Thermal Interrogation (MLTI): A Novel In Situ Metal Powder Evaluation Technique for Laser Powder Bed Fusion

March 1, 2025
Author(s)
Sina Ghadi, Xiaobo Chen, Nicholas Tomasello, Nicholas Derimow, Srikanth Rangarajan, Guangwen Zhou, Scott Schiffres
Assessment of metal powders in powder bed additive manufacturing is crucial, as the quality of the powders significantly impacts the final printed parts. This study introduces a novel technique to characterize metal powders by analyzing changes in their

Correlating Titanium Powder Manufacturing Methods and Resultant Particle Morphologies to Microstructural Properties, Particle Flight and Impact Velocity, and Bonding and Deposition Characteristics in Cold Spray Additive Manufacturing

January 23, 2025
Author(s)
Pranav Anumandla, Carlos Faggi, Sinan Muftu, Edward Garboczi, Newell Moser, Rachel Cook, Nicholas Derimow, Ozan Ozdemir
Unlike high temperature thermal spray processes and metal additive manufacturing methods that require extensive heat treatment, native particle microstructural properties in the feedstock powder have been shown to dictate the final thermomechanical

Precipitation hardening of laser powder bed fusion Ti-6Al-4V

November 20, 2024
Author(s)
Nicholas Derimow, Jake Benzing, Jacob Garcia, Zachary Levin, Ping Lu, Newell Moser, Chad Beamer, Frank DelRio, Nikolas Hrabe
The laser powder bed fusion (PBF-L) additive manufacturing (AM) community has dedicated significant efforts into process optimization and control for defect-free Ti-6Al-4V. As defects become less of an issue for PBF-L Ti-6Al-4V, the processing-structure

Glass microwave microfluidic devices for broadband characterization of diverse fluids

November 15, 2024
Author(s)
Jacob Pawlik, Tomasz Karpisz, Yasaman Kazemipour, Nicholas Derimow, Sarah Evans, Bryan Bosworth, Christian Long, Nathan Orloff, James Booth, Angela Stelson
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 10 GHz with relatively low uncertainty. Conventional microwave microfluidic devices use polymer-based microfluidic

Hydrogen Embrittlement Susceptibility and Fracture Toughness Measurements of Welded X65M Pipeline Steels

November 14, 2024
Author(s)
Newell Moser, Zack Buck, Nicholas Derimow, May Ling Martin, Damian Lauria, Enrico Lucon, Peter Bradley, Matthew Connolly
Hydrogen is known to deteriorate the mechanical performance of steels (i.e., hydrogen embrittlement). The welding processes involved in the manufacturing and joining of steel pipelines locally modifies the microstructure of the steel, further complicating

Microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V after HIP treatments with varied temperatures and cooling rates

October 22, 2024
Author(s)
Nicholas Derimow, Jake Benzing, Howard Joress, Austin McDannald, Ping Lu, Frank DelRio, Newell Moser, Matthew Connolly, Alec Saville, Orion Kafka, Chad Beamer, Ryan Fishel, Chris Hadley, Nikolas Hrabe
This work investigated non-standard HIP cycles for PBF-L Ti-6Al-4V and characterized microstructure and tensile properties to compare between material that originated from the same build. For 920 °C, faster cooling rates (100 °C/min, 2000 °C/min) were

Assessing girth weld quality of pipeline steels and their susceptibility to hydrogen embrittlement

August 28, 2024
Author(s)
Zack Buck, Newell Moser, Nicholas Derimow, May Ling Martin, Damian Lauria, Enrico Lucon, Douglas Stalheim, Peter Bradley, Matthew Connolly
Hydrogen has long been considered a viable carbon-free option for ever-increasing societal desires to transform our energy infrastructure towards more renewable and alternative technologies. However, the effects of hydrogen-assisted damage mechanisms that

Mechanical Metallurgy on Columbia Gas X100 Experimental Pipe

August 28, 2024
Author(s)
Dash Weeks, Ryan White, Jake Benzing, Enrico Lucon, Nicholas Derimow, Ashley Kroon, Robert Smith
This study evaluates the material properties of an X100 pipeline steel extracted from an experimental transmission pipeline section placed into service in the 1960s. The purpose is to compare these properties with current X100 steel standards

Characterizing the Broadband RF Permittivity of 3D-Integrated Layers in a Glass Wafer Stack from 100 MHz to 30 GHz

July 30, 2024
Author(s)
Jacob Pawlik, Tomasz Karpisz, Nicholas Derimow, Sarah Evans, Jim Booth, Nate Orloff, Chris Long, Angela Stelson
We present a method for accurately determining the permittivity of dielectric materials in 3D integrated structures at broadband RF frequencies. With applications of microwave and millimeter-wave electronics on the rise, reliable methods for measuring the

Assessing girth weld quality of pipeline steels and their susceptibility to hydrogen embrittlement

June 16, 2024
Author(s)
Zack Buck, Newell Moser, May Ling Martin, Nicholas Derimow, Damian Lauria, Enrico Lucon, Douglas Stalheim, Peter Bradley, Matthew Connolly
Hydrogen is known to cause premature failure in various steel infrastructures due to effects of embrittlement, which is particularly detrimental to ferritic steel structures such as pipelines and pressure vessels. Therefore, understanding the

Microstructural effects on the rotating bending fatigue behavior of Ti-6Al-4V produced via laser powder bed fusion with novel heat treatments

April 30, 2024
Author(s)
Nicholas Derimow, Jake Benzing, David Newton, Chad Beamer, Ping Lu, Frank DelRio, Newell Moser, Orion Kafka, Ryan Fishel, Lucas Koepke, Chris Hadley, Nik Hrabe
The rotating bending fatigue (RBF) behavior (fully reversed, R = -1) of additively manufactured (AM) Ti-6Al-4V alloy produced via laser powder bed fusion (PBF-L) was investigated with respect to different microstructures achieved through novel heat

Investigation of melt pool dynamics and solidification microstructures of laser melted Ti-6Al-4V powder using X-ray synchrotron imaging

April 10, 2024
Author(s)
Nicholas Derimow, Madelyn Madrigal-Camacho, Orion Kafka, Jake Benzing, Edward Garboczi, Samuel J. Clark, Suveen Mathaudhu, Nik Hrabe
Titanium alloy (Ti-6Al-4V) is widely used in additive manufacturing (AM) industry. However, as laser powder-bed fusion (PBF-L) additive manufacturing (AM) advances towards reliable production of titanium parts, a thorough understanding of the process

AM Bench 2022 Macroscale Tensile Challenge at Different Orientations (CHAL-AMB2022-04-MaTTO) and Summary of Predictions

January 16, 2024
Author(s)
Newell Moser, Jake Benzing, Orion Kafka, Jordan Weaver, Nicholas Derimow, Ross Rentz, Nik Hrabe
The additive manufacturing benchmarking challenge described in this work was aimed at the prediction of average stress–strain properties for tensile specimens that were excised from blocks of non-heat-treated IN625 manufactured by laser powder bed fusion

Enhanced strength of additively manufactured Inconel 718 by means of a simplified heat treatment strategy

October 27, 2023
Author(s)
Jake Benzing, Nicholas Derimow, Orion Kafka, Nik Hrabe, Philipp Schumacher, Don Godfrey, Chad Beamer, Priya Pathare, Jay Carroll, Ping Lu, Isaiah Trujillo, Frank DelRio
This study simplified the heat treatment route and reduced the post-processing burden for laser powder bed fusion IN718 (a nickel-based superalloy). The tailored route retained advantageous microstructures and improved tensile strength when compared to the

Effects of as-built surface with varying number of contour passes on high-cycle fatigue behavior of additively manufactured nickel alloy 718

August 5, 2023
Author(s)
Orion Kafka, Jake Benzing, Nicholas Derimow, Philipp Schumacher, Lucas Koepke, Chad Beamer, Donald Godfrey, Nik Hrabe
High cycle fatigue life of laser-powder bed fusion (L-PBF) parts depends on several factors; as-built surfaces, when present, are a particular concern. This work measures as-built L-PBF surfaces with X-ray computed tomography, and uses rotating beam

Fracture Toughness Tests at 77 K and 4 K on 316L Stainless Steel Welded Plates

July 29, 2022
Author(s)
Jake Benzing, Nicholas Derimow, Enrico Lucon, Dash Weeks
In the framework of a collaborative project between ASME, NASA, and NIST, quasi-static fracture toughness tests have been performed at liquid nitrogen temperature (77 K, or -196 °C) and liquid helium temperature (4 K, or -269 °C) on weld specimens

Tensile Tests at 77 K and 4 K on 316L Stainless Steel Welded Plates

July 19, 2022
Author(s)
Dash Weeks, Nicholas Derimow, Jake Benzing
Based on the collaborative framework established between ASME, NASA, and NIST, quasi-static tensile tests were performed in liquid nitrogen (77 K) and liquid helium (4 K) on tensile specimens extracted from the centers of four welded 316L stainless steel

Assessment of intra-build variations in tensile strength in electron beam powder-bed fusion Ti-6Al-4V part 1: Effects of build height

June 2, 2022
Author(s)
Nicholas Derimow, Alejandro Romero, Aldo Rubio, Cesar Terrazas, Newell Moser, Orion Kafka, Jake Benzing, Francisco Medina, Ryan Wicker, Nik Hrabe
In this work, rectangular blocks of electron beam powder-bed fusion (PBF-EB) additively manufactured (AM) Ti-6Al-4V were built, such that a total of 68 mini-tensile test coupons could be extracted for mechanical testing over a range of build height and