Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Samuel P. Benz (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 557

Planarized process for single-flux-quantum circuits with self-shunted Nb/NbxSi1-x/Nb Josephson junctions

February 18, 2019
Author(s)
David I. Olaya, Manuel C. Castellanos Beltran, Javier Pulecio, John P. Biesecker, Soroush Khadem, Theodore Lewitt, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz
We describe the single-flux-quantum (SFQ) circuit fabrication process employed at NIST's Boulder Microfabrication Facility. The process includes four superconducting metal layers, one palladium-gold resistor layer, and a contact pad layer. Chemical

RF waveform synthesizers with quantum-based voltage accuracy for communications metrology

February 11, 2019
Author(s)
Peter F. Hopkins, Justus A. Brevik, Manuel C. Castellanos Beltran, Nathan E. Flowers-Jacobs, Anna E. Fox, David I. Olaya, Christine A. Donnelly, Paul D. Dresselhaus, Samuel P. Benz
We report on NIST’s development of Josephson junction-based programmable reference sources to synthesize quantum-accurate, spectrally-pure waveforms for characterizing and improving next generation communication devices and systems. The goal is to provide

Stacked Josephson Junctions as inductors for SFQ circuits

February 11, 2019
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Paul D. Dresselhaus, Samuel P. Benz, Peter F. Hopkins
In order for Single Flux Quantum (SFQ) circuits to be scaled to densities needed for large-scale integration, typical lithographically-patterned circuit components should be made to be as compact as possible. In this work, we characterize the performance

Jitter Sensitivity Analysis of the Superconducting Josephson Arbitrary Waveform Synthesizer

November 4, 2018
Author(s)
Christine A. Donnelly, Justus Brevik, Paul Dresselhaus, Pete Hopkins, Samuel P. Benz
We present the first jitter sensitivity analysis of a superconducting voltage reference waveform synthesizer with fundamentally accurate output pulses. Successful deployment of a reference waveform source at microwave frequencies will represent a new

Characterization of a Dual Josephson Impedance Bridge

October 21, 2018
Author(s)
Nathan Flowers-Jacobs, Blaise Jeanneret, Frederic Overney, Alain Rufenacht, Anna Fox, Paul Dresselhaus, Samuel P. Benz
This paper describes a dual Josephson impedance bridge capable of comparing any two impedances, that is, with any amplitude ratio and relative phase, over a wide range of frequency. A new, more compact, design has been achieved by mounting the two

Measurement of Leakage Current to Ground in Programmable Josephson Voltage Standard

July 8, 2018
Author(s)
Alain Rufenacht, Charles J. Burroughs, Paul D. Dresselhaus, Samuel P. Benz
The voltage error associated with the leakage current of programmable Josephson voltage standards (PJVS) is one of the largest contributions to the uncertainty in direct comparison of voltage standards. Due to the parallel biasing scheme of the PJVS and

DC Comparison of a Programmable Josephson Voltage Standard and a Josephson Arbitrary Waveform Synthesizer

July 7, 2018
Author(s)
Alain Rufenacht, Nathan Flowers-Jacobs, Anna Fox, Steven B. Waltman, Robert E. Schwall, Paul Dresselhaus, Samuel P. Benz, Charles J. Burroughs
We present the first dc comparison of a programmable Josephson voltage standards and a pulse- driven Josephson arbitrary waveform synthesizer (JAWS) at 3 V. Both devices are mounted side- by-side on the cold stage of a cryocooler. The relative agreement

Measuring the Leakage Current to Ground in Programmable Josephson Voltage Standards

July 7, 2018
Author(s)
Alain Rufenacht, Charles J. Burroughs, Paul Dresselhaus, Samuel P. Benz
The voltage error associated with the leakage current of programmable Josephson voltage standards (PJVS) is one of the largest contributions to the uncertainty in direct comparison of voltage standards. Due to the parallel biasing scheme of the PJVS and