Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Pavel Kabos (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 101 - 125 of 261

Microwave Measurements and Systematic Circuit-Model Extraction of Nanowire Metal Semiconductor Field Effect Transistors

August 24, 2012
Author(s)
Dazhen Gu, Thomas M. Wallis, Pavel Kabos, Paul T. Blanchard, Kristine A. Bertness, Norman A. Sanford
We present detailed on-wafer scattering parameter measurements and equivalent circuit modeling of metal semiconductor field effect transistor (MESFET) that incorporates a GaN nanowire (NW). A systematic procedure is established to extract intrinsic model

Microwave measurements and systematic circuit-model extraction of nanowire metal semiconductor field-effect transistors

August 24, 2012
Author(s)
Dazhen Gu, Thomas M. Wallis, Pavel Kabos, Paul T. Blanchard, Kristine A. Bertness, Norman A. Sanford
We present detailed on-wafer scattering parameter measurements and equivalent circuit modeling of metal semiconductor field effect transistor (MESFET) that incorporates a GaN nanowire (NW). A systematic procedure is established to extract intrinsic model

A near-field scanning microwave microscope for characterization of inhomogeneous photovoltaics

August 10, 2012
Author(s)
Joel C. Weber, Kristine A. Bertness, John B. Schlager, Norman A. Sanford, Atif A. Imtiaz, Thomas M. Wallis, Pavel Kabos, Kevin J. Coakley, Victor Bright, Lorelle M. Mansfield
We present a near field scanning microwave microscope (NSMM) optimized for imaging photovoltaic samples. Our system incorporates a cut Pt-Ir tip inserted into an open ended coaxial cable to form a weak resonator, allowing the microwave reflection S11

Calibration Techniques for Scanning Microwave Microscopy

July 1, 2012
Author(s)
Thomas M. Wallis, Atif A. Imtiaz, Alexandra Curtin, Pavel Kabos, H. P. Huber, Joseph J. Kopanski, F. Kienberger
Two techniques are described for calibrating a scanning microwave microscope (SMM). The first technique enables spatially-resolved absolute capacitance measurements on the attofarad-to-femtofarad scale. The second technique enables profiling or dopant

A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide

May 21, 2012
Author(s)
Ward L. Johnson, Thomas M. Wallis, Pavel Kabos, Eduard Rocas, Juan C. Collado Gomez, Li-Anne Liew, Albert Davydov, Alivia Plankis, Paul R. Heyliger
The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses

Frequency-selective contrast on variably doped p-type silicon with a scanning microwave microscope

May 14, 2012
Author(s)
Atif A. Imtiaz, Thomas M. Wallis, SangHyun S. Lim, H. Tanbakuchi, H-P Huber, A. Hornung, P. Hinterdorfer, J. Smoliner, F. Kienberger, Pavel Kabos
We report frequency dependent contrast in d(S11)/dV measurements of a variably doped p-type silicon sample in the frequency range from 2GHz to 18GHz. The measurements were conducted bys use of a scanning microwave microscope. The measurements were done at

Calibrated nanoscale dopant profiling using a scanning microwave microscope.

January 3, 2012
Author(s)
Pavel Kabos, Thomas M. Wallis, H P. Hubner, I. Humer, M. Hochleitner, M. Fenner, M. Moertelmaier, C. Rankl, Atif A. Imtiaz, H. Tanbakuchi, P. Hinterdorfer, J. Smoliner, Joseph J. Kopanski, F. Kienberger
The scanning microwave microscope (SMM) is used for calibrated capacitance spectroscopy and spatially resolved dopant profiling measurements. It consists of an atomic force microscope (AFM) combined with a vector network analyzer operating between 1-20 GHz

Nanofibers for RF and Beyond

December 1, 2011
Author(s)
Thomas M. Wallis, Kichul Kim, Pavel Kabos, Dejan Filipovic
In order to realize new interconnect concepts based on nanofibers, reliable metrology is required. Given the clock-speeds of integrated circuits in the present as well as the foreseeable future, this metrology must be compatible with radio frequencies (RF)

High Frequency Characterization of Contact Resistance and Conductivity of Platinum Nanowires*

October 1, 2011
Author(s)
Kichul Kim, Paul Rice, Thomas M. Wallis, Dazhen Gu, SangHyun S. Lim, Atif A. Imtiaz, Pavel Kabos, Dejan Filipovic
Abstract— Individual platinum (Pt) nanowires (NWs) with 100 nm and 250 nm diameters, embedded in coplanar waveguide (CPW) structures are investigated. Three approaches for characterization of their contact resistance and conductivity at high frequencies

Electrical Characterization of Photoconductive GaN Nanowire Devices from 50 MHz to 33 GHz

July 1, 2011
Author(s)
Thomas M. Wallis, Dazhen Gu, Atif A. Imtiaz, Pavel Kabos, Paul T. Blanchard, Norman A. Sanford, Kristine A. Bertness, Christpher Smith
The electrical response of two-port., photoconductive GaN nanowire devices was measured from 50 MHz to 33 GHz. The admittance of individual contacted nanowires showed an increase on the order of 10% throughout the measured frequency range after exposure to

Deembedding parasitic elements of GaN nanowire MESFETs by use of microwave measurements

June 3, 2011
Author(s)
Dazhen Gu, Thomas M. Wallis, Paul T. Blanchard, SangHyun S. Lim, Atif A. Imtiaz, Kristine A. Bertness, Norman A. Sanford, Pavel Kabos
We present a deembedding roadmap for extracting parasitic elements of a nanowire (NW) MESFET device from full two-port scattering-parameter measurements in the frequency range from 0.1 GHz to 25 GHz. The NW MESFET is integrated in a microwave coplanar

Influence of Periodic Patterning on the Magnetization Response of Micromagnetic Structures

March 29, 2011
Author(s)
SangHyun S. Lim, Thomas M. Wallis, Atif A. Imtiaz, Dazhen Gu, Thomas Cecil, Pavel Kabos, Pavol Krivoski
The magnetization dynamics of a single, patterned, thin-film Permalloy (Ni80Fe20, Py) elements embedded in a coplanar waveguide (CPW) are investigated. The anisotropic magnetoresistance (AMR) effect serves as the detection mechanism in current-modulated

Effects of shape distortions and imperfections on mode frequencies and collective linewidths in nanomagnets

March 28, 2011
Author(s)
Hans T. Nembach, Justin M. Shaw, Thomas J. Silva, Ward L. Johnson, Sudook A. Kim, Robert D. McMichael, Pavel Kabos
We used Brillouin light scattering to show that shape distortions in Ni80Fe20 nanoelements can have a dramatic effect on the measured linewidth of certain modes. By intentionally introducing an amount of “egg-like” shape distortion to an ideal elliptical